My-library.info
Все категории

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
275
Читать онлайн
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

Искусство схемотехники. Том 1 [Изд.4-е] читать онлайн бесплатно

Искусство схемотехники. Том 1 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

Рис. 4.41. Схема выборки-запоминания. а — стандартная конфигурация, форма сигнала утрирована; б — интегральная схема LF398 — схема выборки-запоминания на одном кристалле.


Существует множество интегральных схем выборки-запоминания, обладающих характеристиками, лучшими, чем у LF398; например, схема типа AD585 фирмы Analog Devices включает в себя внутренний конденсатор и гарантирует максимальное время захвата 3 мкс при точности 0,01 % для сигнала в виде ступени величиной 10 В.

* * *

ДИЭЛЕКТРИЧЕСКОЕ ПОГЛОЩЕНИЕ

Конденсаторам присущи недостатки. Прежде всего это — утечка (параллельное сопротивление), последевательное сопротивление и индуктивность, ненулевой температурный коэффициент. Реже вспоминают про диэлектрическое поглощение — явление, которое очень ярко проявляет себя в следующей ситуации: возьмем большой танталовый конденсатор, заряженный до напряжения 10 В и быстро его разрядим, подключив к его выводам резистор 100 Ом. Удалим резистор и понаблюдаем за напряжением на конденсаторе с помощью вольтметра с большим импедансом. Представьте себе, что напряжение на конденсаторе будет восстанавливаться, и за несколько секунд достигнет величины примерно 1 В.

Явление диэлектрического поглощения (диэлектрической памяти) недостаточно изучено, полагают, что оно связано с остаточной поляризацией диэлектрического вещества; особенно плохим в этом отношении является такой диэлектрик, как слюда с присущей ей слоистой структурой. С точки зрения схемы добавочная поляризация проявляет себя так, как если бы к выводам конденсатора подключили ряд последовательных ЯС-цепочек (рис. 4.42, а) с постоянными времени в диапазоне от ~= 100 мкс до нескольких секунд. По свойству диэлектрического поглощения диэлектрики существенно отличаются друг от друга; графики на рис. 4.42, б, отражают зависимость сохраняемого напряжения от времени для нескольких высококачественных диэлектриков после воздействия на них сигнала в виде ступени с амплитудой 10 В и длительностью 100 мкс.

Диэлектрическое поглощение может порождать серьезные ошибки в интеграторах и других аналоговых схемах, которые рассчитаны на идеальные характеристики конденсаторов. Если, например, к схеме выборки-запоминания подключена схема аналого-цифрового преобразования, то диэлектрическое поглощение может привести к ужасающим результатам. В подобных случаях конденсаторы нужно выбирать как можно тщательней (с этой точки зрения наилучшим диэлектриком является тефлон), лишний раз подвергая свой выбор сомнению. В особых случаях можно прибегнуть и к компенсационным схемам, в которых влияние диэлектрического поглощения конденсатора электрически устраняют с помощью тщательно настроенных RС-цепочек. Такой подход используется в некоторых высококачественных модулях выборки-запоминания, производимых фирмой Hybrid Systems.



Рис. 4.42. Диэлектрическое поглощение в кондесаторах. а — модель, б — зафиксированные изменения для некоторых диэлектриков (по фирменной документации Hybrid Systems HS9716).


4.17. Активный ограничитель

На рис. 4.43 показан активный ограничитель, который представляет собой один из вариантов схемы, рассмотренной в гл. 1.



Рис. 4.43.


Для показанных на схеме величин компонентов напряжение на входе, отвечающее условию Uвх < +10 В, приводит выход ОУ в состояние насыщения, и выполняется условие Uвых = Uвх. Когда напряжение Uвх превышает 10 В, диод замыкает цепь обратной связи и фиксирует на выходе значение 10 В. В этой схеме конечная скорость нарастания ОУ является причиной появления небольших искажений (выбросов) в выходном сигнале, которые возникают в тот момент, когда входное напряжение в процессе нарастания достигает значения напряжения фиксации (рис. 4.44).



Рис. 4.44.


4.18. Схема выделения модуля абсолютного значения сигнала

Схема, показанная на рис. 4.45, позволяет получать на выходе положительное напряжение, равное абсолютной величине входного сигнала; она представляет собой двухполупериодный выпрямитель. Как обычно, операционные усилители с цепью обратной связи устраняют влияние падений напряжения на диодах, характерное для пассивного выпрямителя.



Рис. 4.45. Активный двухполупериодный выпрямитель.


Упражнение 4.9. Объясните, как работает схема, показанная на рис. 4.45. Подсказка: сначала на вход нужно подать положительное напряжение и посмотреть, что будет, а затем — отрицательное напряжение.


На рис. 4.46 показана еще одна схема определения абсолютного значения. Она представляет собой сочетание вспомогательного инвертора (ИС1) и активного ограничителя (ИС2). При положительных уровнях входного напряжения ограничитель не влияет на работу схемы, его выход находится в насыщении, и в результате ИСХ работает как инвертор с единичным коэффициентом усиления. Таким образом, выходное напряжение по абсолютному значению равно входному. При отрицательных уровнях входного напряжения ограничитель поддерживает в точке X напряжение, равное потенциалу земли, и при этом ИС1 работает как инвертор с единичным коэффициентом усиления. Таким образом, выходное напряжение равно абсолютной величине входного напряжения. Если ИС2 запитывается от единственного источника положительного напряжения, то отпадают проблемы, связанные с конечной скоростью нарастания, так как напряжение на выходе ограничителя изменяется лишь в пределах падения напряжения на диоде. Отметим, что от резистора R3 высокая точность не требуется.



Рис. 4.46.



4.19. Интеграторы

На основе операционных усилителей можно строить почти идеальные интеграторы, на которые не распространяется ограничение Uвых << Uвх. На рис. 4.47 показана такая схема.



Рис. 4.47. Интегратор.


Входной ток Uвх/протекает через конденсатор С. В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

Uвх/R = — C(dUвх/dt) или Uвых = (1/RCUвхdt + const

Безусловно, входным сигналом может быть и ток, в этом случае резистор R не нужен. Представленной здесь схеме присущ один недостаток, связанный с тем, что выходное напряжение имеет тенденцию к дрейфу, обусловленному сдвигами ОУ и током смещения (обратной связи по постоянному току, которая нарушает правило 3 из разд. 4.08, здесь нет). Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Кроме того, на практике часто прибегают к периодическому сбросу в нуль интегратора с помощью подключенного к конденсатору переключателя (обычно на полевом транзисторе), поэтому играет роль только кратковременный дрейф. В качестве примера рассмотрим интегратор, в котором использован ОУ на полевых транзисторах типа LF411 (ток смещения составляет 25 пА), настроенный на нуль (напряжение сдвига составляет не более 0,2 мВ).

Резистор и конденсатор выбраны так: R = 10 МОм и С = 10 мкФ; для такой схемы дрейф не превышает 0,005 В за 1000 с. Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току. Такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: f < 1/R2С. На рис. 4.48 показаны интеграторы, в которых использованы переключатели для сброса на полевых транзисторах и резистор стабилизации смещения.



Рис. 4.48. Интеграторы на основе ОУ с переключателями для сброса.


В схемах такого типа может потребоваться резистор обратной связи с очень большим сопротивлением. На рис. 4.49 показан прием, с помощью которого большое эффективное значение сопротивления обратной связи создается за счет резисторов с относительно небольшими сопротивлениями.


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Искусство схемотехники. Том 1 [Изд.4-е] отзывы

Отзывы читателей о книге Искусство схемотехники. Том 1 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.